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We perform a comprehensive numerical study of d-wave Fermi surface deformations �dFSD� on a square
lattice, the so-called d-wave Pomeranchuk instability, including bilayer coupling. Since the order parameter
corresponding to the dFSD has Ising symmetry, there are two stacking patterns between the layers, �+,+� and
�+,−�. This additional degree of freedom gives rise to a rich variety of phase diagrams. The phase diagrams are
classified by means of the energy scale �z, which is defined as the bilayer splitting at the saddle points of the
in-plane band dispersion. As long as �z�0, a major stacking pattern is usually �+,−�, and �+,+� stacking is
stabilized as a dominant pattern only when the temperature scale of the dFSD instability becomes much smaller
than �z. For �z=0, the phase diagram depends on the precise form of the bilayer dispersion. We also analyze
the effect of a magnetic field on the bilayer model in connection with a possible dFSD instability in the
bilayered ruthenate Sr3Ru2O7.
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I. INTRODUCTION

While a wide variety of shapes of the Fermi surface �FS�
are realized in metals, the Fermi surface usually respects the
point-group symmetry of the underlying lattice structure.
However, it was found that Fermi surface symmetry can be
broken spontaneously due to electron-electron correlations in
the two-dimensional t-J,1,2 Hubbard,3 and extended
Hubbard4 models. This instability is driven by forward-
scattering processes of quasiparticles. Standard model inter-
action leading to such symmetry breaking is given by

�
k,k�

fkk�nknk�. �1�

Here

fkk� = − gdkdk� �2�

is the forward-scattering interaction with d-wave symmetry
dk=cos kx−cos ky and the coupling constant g�0; nk is the
electron-density operator. The interaction �Eq. �1�� gives rise
to attraction between quasiparticles around �0,�� and those
around �0,−��, and repulsion between �0,�� and �� ,0�. As
a result, symmetry of the Fermi surface may be broken spon-
taneously at low temperature as shown by the red lines �elon-
gated FS� in Fig. 1. These d-wave Fermi surface deforma-
tions �dFSD� break orientational symmetry of a square
lattice and are often called a d-wave Pomeranchuk instability
or an electronic nematic transition. While these three phrases
are currently used in the same meaning, it may be worth
mentioning the conceptional difference. The Pomeranchuk
instability indicates breaking of Pomeranchuk’s stability cri-
terion for isotropic Fermi liquids.5 However the dFSD insta-
bility can occur also for strongly correlated electron systems
such as those described by the t-J model.1,2,6,7 Moreover, the
dFSD instability can be realized without breaking Pomeran-
chuk’s criterion because the transition is typically of first
order at low temperature.8,9 The concept of the electronic
nematic state was originally introduced to describe melting
of possible charge stripes in cuprate superconductors.10

Hence the electronic nematic state often implies underlying
charge-stripe order.11 However, the dFSD is driven by
forward-scattering interactions, not by the underlying charge
stripes which necessarily generate a finite momentum trans-
fer. The dFSD instability provides a different route to the
electronic nematic state without assuming the underlying
charge-stripe order.

The minimal model describing the dFSD instability con-
sists of the forward-scattering interaction �Eq. �1�� and a ki-
netic term of electrons. This model, which we refer to as the
f model, was extensively investigated in Refs. 8, 9, and 12.
While the interaction considered in Ref. 8 is expressed in
terms of quadrupole density, it becomes the same as our
interaction �Eq. �1�� after a mean-field calculation in Ref. 8.
The dFSD instability occurs around the van Hove filling with
a dome-shaped transition line in a plane of the chemical po-
tential and temperature. The transition is of second order
around the center of the dome and changes to a first order at
the edges of the dome; the end points of the second-order
line are tricritical points. In the weak-coupling limit, the
phase diagram is characterized by a single energy scale,
yielding various universal ratios.9

The double-layered strontium ruthenate Sr3Ru2O7 is a
material possibly exhibiting the dFSD instability,13,14 which

FIG. 1. �Color online� dFSD. Forward-scattering processes of
quasiparticles around �� ,0� and �0,�� drive symmetry breaking of
the Fermi surface as shown by red lines �elongated FS�. This sym-
metry breaking is characterized by the order parameter �, which is
negative and positive in �a� and �b�, respectively.
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was supported by theoretical studies.15–19 The idea of the
dFSD was also invoked in the context of high-Tc
cuprates1,2,20 to understand the strong xy anisotropy of mag-
netic excitation spectra in the underdoped and optimally
doped YBa2Cu3Oy with y=6.6 and 6.85.21,22 In the more
underdoped material YBa2Cu3O6.45 much stronger aniso-
tropy was observed23 and two scenarios were proposed: �i� a
quantum phase transition to the dFSD deeply inside the
d-wave superconducting state24,25 and �ii� strong suppression
of singlet pairing, which concomitantly enhances the dFSD
order since the dFSD is order competing with singlet
pairing.26 The two-dimensional electron gas is also known to
show strong anisotropy of resistivity at low temperature in
half-filled higher Landau levels.27,28 The orientation of the
anisotropy always appears along the crystallographic
direction.29 Theoretically the observed anisotropy was inter-
preted as nematic order in continuum models.30–32

So far, no other materials exhibiting the dFSD instability
are known. However, the dFSD is a generic tendency in cor-
related electron systems. It was found not only in the t-J
�Refs. 1 and 2� and Hubbard3,4 models but also in more
general models with central particle-particle interactions.33

The dFSD can also occur in a three-dimensional system.34

Therefore the dFSD is an interesting possibility for various
materials, except if other instabilities prevail over it.

In layered materials, weak interlayer coupling is present.
Since the order parameter of the dFSD is characterized by
Ising symmetry �see Fig. 1�, there are two stacking patterns
�+,+� and �+,−�, as shown in Fig. 2; we call the former
ferro-type �F� stacking and the latter antiferro type �AF�. In
the latter case, macroscopic anisotropy does not appear �Fig.
2�b��, leading to self-masking of the underlying dFSD insta-
bility. In the framework of the Landau expansion of the free
energy, it was found that AF stacking is usually favored as
long as the c axis dispersion at the saddle points of the in-
plane band dispersion is finite.35 That is, the dFSD turns out
to provide spontaneous symmetry breaking which is usually
self-masked in layered systems. The study Ref. 35 suggests a
possibility that the dFSD is hidden in various materials.

In this paper, we perform a comprehensive numerical
study of the dFSD instability in the bilayer f model. We

show that the inclusion of bilayer coupling in the f model
yields a rich variety of phase diagrams upon tuning interac-
tion strength, bilayer dispersions, and hopping integrals. The
important quantity is the energy scale �z, the bilayer splitting
at the saddle points of the in-plane band dispersion. For �z
�0, a major stacking pattern is usually AF, and F stacking is
stabilized as a dominant pattern only when the temperature
scale of the dFSD becomes much smaller than �z. For �z
=0, the phase diagram depends strongly on the form of the
bilayer dispersion, leading to a variety of phase diagrams.
While the saddle points are frequently located at �� ,0� and
�0,�� in a square lattice system, they may shift to other k
points in the presence of long-range hopping integrals. Even
in this case, we demonstrate that our conclusion holds. Con-
sidering that the dFSD instability is likely to occur upon
applying a magnetic field in the bilayered ruthenate
Sr3Ru2O7,13,14 we also calculate the phase diagram including
the field in the bilayer f model and choosing parameters
appropriate to Sr3Ru2O7. F stacking is stabilized around the
van Hove energy of the bonding band but the dFSD around
that of the antibonding band is found to be strongly sup-
pressed by the field.

The paper is structured as follows. In Sec. II we introduce
the bilayer f model. Phase diagrams are presented in Sec. III
for various choices of coupling strength, bilayer dispersions,
and long-range hopping integrals. We also show a phase dia-
gram in the presence of a magnetic field, imitating the ex-
perimental situation in Sr3Ru2O7. The conclusions follow in
Sec. IV. The present work is complementary to Ref. 35 and
elucidates possible phase diagrams of the dFSD instability in
the bilayer model. We hope it will serve as a sound founda-
tion to explore the dFSD instability in bilayered systems.

II. MODEL AND FORMALISM

We focus on the minimal bilayer model exhibiting the
dFSD instability and analyze the following Hamiltonian,

H = �
k,�

i=A,B

��k − 	�ck�
i† ck�

i +
1

2N
�

k,k�
i=A,B

fkk�nk
i nk�

i

+ �
k,�

�k
z �ck�

A†ck�
B + ck�

B†ck�
A � , �3�

where ck�
i† �ck�

i � creates �annihilates� an electron with momen-
tum k and spin � in the i=A and B planes; nk

i =��ck�
i† ck�

i is
the number operator; N is the total number of sites on the i
plane; and 	 denotes the chemical potential. We consider
hopping amplitudes up to third nearest neighbors, i.e., t, t�,
and t�, on the square lattice. The in-plane band dispersion �k
is thus given by

�k = − 2t�cos kx + cos ky� − 4t� cos kx cos ky

− 2t��cos 2kx + cos 2ky� . �4�

The forward-scattering interaction fkk� drives the dFSD in-
stability as shown in Fig. 1. This interaction mimics the ef-
fective interaction obtained in the t-J �Refs. 1 and 2� and
Hubbard3,4 models. The last term in Hamiltonian �3� is the

FIG. 2. Stacking patterns of the dFSD in a bilayer system and
the Fermi surfaces for �k

z =−tz: �a� F stacking ��A�B�0� and �b� AF
stacking ��A�B
0�. A large tz�=0.3� is employed so that the bilayer
splitting becomes apparent.
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hybridization between A and B planes. We consider four
types of bilayer dispersions, �k

z =−
tz

4 �cos kx−cos ky�2,
−2tz�cos kx+cos ky�, −4tz cos

kx

2 cos
ky

2 , and −tz; the first one is
the dispersion suggested for bilayer cuprates such as
YBa2Cu3Oy �Ref. 36�; the second is a dispersion taking ac-
count of next-nearest-neighbor hopping between layers; the
third is an expected dispersion in a system where adjacent
layers are shifted by � 1

2 , 1
2 �; and the forth is the simplest one.

Hamiltonian �3� is analyzed in the Hartree approximation,
which becomes the exact analysis of our model in the ther-
modynamic limit. We obtain the mean field

�A�B� = −
g

N
�
k

dk�nk
A�B�� , �5�

which is nonzero only if the electronic state loses fourfold
symmetry of the square lattice and is thus the order param-
eter of the dFSD in the A�B� plane. The FS is elongated
along the kx and ky directions for �A�B��0 and �A�B�
0,
respectively, as shown in Fig. 1, i.e., the order parameter has
Ising symmetry. F �AF� stacking is thus defined by �A�B

�0�
0� �see Fig. 2�. The mean-field Hamiltonian reads

HMF = �
k,�

�ck�
A† ck�

B† ���k
A �k

z

�k
z �k

B 	�ck�
A

ck�
B 	 +

N

2g
���A�2 + ��B�2� ,

�6�

where �k
A�B�=�k+�A�B�dk−	. We determine the mean fields

self-consistently under the constraint that each plane has the
same electron density. A solution with 
�A
� 
�B
 is, in prin-
ciple, allowed and induces spontaneous charge imbalance be-
tween the planes.37 However, such a solution costs energy by
producing an electric field between the planes. The bilayer

coupling is generally expected to be weak in layered materi-
als and thus we fix tz / t=0.1.

III. RESULTS

In a square lattice system, the saddle points are located in
�� ,0� and �0,�� for 
t� / t

0.5 and t�=0. As typical band
parameters we choose t� / t=0.35 and t� / t=0, which were
employed to discuss Sr3Ru2O7.17,18 We define the character-
istic scale of �k

z as the bilayer splitting at the saddle points of
the in-plane band dispersion, namely,

�z = 
�k
z 
 at the saddle points of �k. �7�

This energy scale �z plays a crucial role to understand the
property of a phase diagram as we will show below. The
results for �z�0 are presented in Sec. III A and those for
�z=0 in Sec. III B. We deal with the case where the saddle
points of �k are shifted from �� ,0� and �0,�� in Sec. III C.
Considering the experimental situation in the bilayer ruthen-
ate, we include a magnetic field in Hamiltonian �3� and
clarify the effect of the field in Sec. III D. We set t=1 and
measure energy in units of t.

A. Finite �z

We present results for the bilayer dispersion, �k
z

=−
tz

4 �cos kx−cos ky�2, for which �z= tz=0.1. Figure 3�a� is
the phase diagram for g=1. The dFSD instability occurs
around the van Hove energy of the in-plane band dispersion,
namely, around 	vH

0 =4t�=1.4 with a dome-shaped transition
line, as in the case of the single-layer model �Ref. 9�; Tc is
almost unchanged by the presence of weak interlayer cou-
pling. The phase diagram is almost symmetric with respect to
	=	vH

0 and becomes symmetric for t�= t�=0 because of

g=1
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FIG. 3. 	-T phase diagrams for the bilayer

dispersion �k
z =−

tz

4 �cos kx−cos ky�2 for several
choices of g. Solid lines, Tc

2nd, denote second-
order transitions while first-order transitions are
denoted by open circles, Tc

1st, and dotted lines,
T1st; the latter, present in panels �a� and �b�, cor-
responds to a transition between F and AF; solid
circles represent tricritical points. The insets mag-
nify the regions around 	�1.065 and T�0.15,
and 	�1.62 and T�0.12 in �a�, and around 	
�1.308 and T�0.03 in �b�.
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particle-hole symmetry. The transition is of second order at
high temperature and changes to a first order at low tempera-
ture; the end points of the second-order line are tricritical
points. The AF dFSD is stabilized in most of the region of
the phase diagram whereas the F dFSD is realized in very
small regions near the tricritical points as shown in the inset.
Upon decreasing the coupling constant g, the F region tends
to be stabilized more near the edges of the transition line
�Fig. 3�b�� and eventually splits from the AF region �Fig.
3�c��. Yet a major stacking pattern is still AF. Below g=0.5,
however, the AF region disappears suddenly and no instabil-
ity occurs around 	vH

0 =1.4. Instead the dFSD instability oc-
curs around the van Hove energy of the bonding and anti-
bonding bands, i.e., 	vH=4t�� tz=1.3 and 1.5 �Fig. 3�d��,
and the phase diagram contains only the F dFSD.

The phase diagrams in Fig. 3 are strikingly similar to
those for �k

z =−tz �Fig. 1 in Ref. 35� regardless of the differ-
ence of the bilayer dispersion. In fact, Fig. 3 shows generic
phase diagrams for a bilayer dispersion which fulfills �z
�0. Typically the AF dFSD state is obtained as a major
stacking pattern when the instability occurs around the van
Hove energy of the in-plane band dispersion. When the tem-
perature scale of the dFSD gets smaller upon reducing g, the
energy scale of the bilayer dispersion, namely, �z becomes
relevant. Eventually the instability occurs only around the
van Hove energy of the bonding and antibonding bands,
which is located at 	vH=	vH

0 ��z unless the bilayer disper-
sion shifts the saddle points of the in-plane band dispersion;
the phase diagram is occupied only by F stacking. Therefore
as long as �z�0, F stacking is stabilized as a dominant
pattern only when the temperature scale of the dFSD be-
comes much smaller than �z and otherwise the major stack-
ing is AF.

B. �z=0

In the case of �z=0, we cannot extract a generic conclu-
sion about the phase diagram of the dFSD. The result de-
pends strongly on the form of a bilayer dispersion. We first
consider the bilayer dispersion �k

z =−2tz�cos kx+cos ky�,

which is the simplest one fulfilling �z=0. The obtained
phase diagrams are shown in Fig. 4. In contrast to Fig. 3, we
see that the instability occurs around 	vH

0 =1.4 even for a
small g. This is because the bonding and antibonding bands
retain the same van Hove energy as that of in-plane band
dispersion, namely, 	vH=1.4, for the present bilayer disper-
sion. We always obtain the F dFSD as a major stacking pat-
tern for both g=1 �Fig. 4�a�� and 0.5 �Fig. 4�b��. While one
would see a sizable region of AF stacking for a large g �Fig.
4�a��, this AF region results from the presence of a large t�.
In fact, AF stacking is strongly suppressed for a smaller t�
�Fig. 4�c�� and completely disappears for t�0.27. F stack-
ing then prevails in the whole region of the phase diagram
even for g=1.

The condition �z=0 also holds for the bilayer dispersion
�k

z =−4tz cos
kx

2 cos
ky

2 , which is expected for a system where
lattice sites shift by � 1

2 , 1
2 � between adjacent layers. Figure

5�a� shows that the dFSD instability occurs around 	vH
0

=1.4, the same as Fig. 4. However, the stacking pattern is
qualitatively different from Fig. 4. AF stacking is stabilized
for 		vH

0 while F stacking for 	�	vH
0 . This property does

not change for a smaller g as shown in Fig. 5�b�. For a much
smaller g
0.25, however, the region of AF stacking shrinks
to disappear and F stacking always becomes dominant �Fig.
5�b��. This is because both bonding and antibonding bands

have the van Hove energy at 	vH=	vH
0 +

tz
2

t+2t�
�1.4059. The

shift of the van Hove energy from 	vH
0 is very small and thus

such an effect starts to appear only when the temperature
scale of the dFSD is substantially reduced to become com-
parable to that of 
	vH−	vH

0 
. In this case, as in the case of
Fig. 3�d�, the dFSD instability occurs around 	vH, leading to
F stacking. Since both bonding and antibonding bands have
the same van Hove energy for the present bilayer dispersion,
only one F stacking region is obtained in Fig. 5�b�.

C. Saddle points away from (� ,0) and (0 ,�)

When a moderate t� is introduced, the saddle points of the
in-plane band dispersion shifts to �0,cos−1 �� or �� , cos−1 ��
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FIG. 4. 	-T phase diagrams for the bilayer
dispersion �k

z =−2tz�cos kx+cos ky� for �a� g=1
and �b� 0.5. The notation is the same as in Fig. 3.
In �c�, the hopping integral is reduced to t�
=0.28 and thus the van Hove energy of the in-
plane band shifts from 	vH

0 =1.4 to 	vH
0 =1.12.

The inset magnifies the region near the tricritical
point at higher 	 in �c�.
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with �=− t+2t�
4t�

and �=− t−2t�
4t�

if 
�

1 or 
�

1. In Sec.
III C, we present the results for t�=0.35 and t�=−0.17. The
saddle points of �k are then in �� , ��� and ��� ,�� with
�=cos−1 ��0.35�. As a bilayer dispersion we employ �k

z

=−2tz�cos kx+cos ky�, for which �z now becomes finite, i.e.,
�z�0.11. Figure 6�a� is a result for a large g�=1.2�. The
presence of the finite �z yields the result completely different
from Fig. 4�a�, although the same bilayer dispersion is em-
ployed; the major stacking pattern now becomes AF. The
phase diagram in turn becomes very similar to the case of
�z�0, i.e., Fig. 3�a�, regardless of difference of band param-

eters and a bilayer dispersion. This demonstrates the impor-
tance to recognize whether the energy scale of �z is finite or
vanishes in order to understand the phase diagram in the
bilayer model of the dFSD.

While a major phase is AF for g=1, the second-order
transition line extends down to T=0, leading to a quantum
phase transition to the dFSD state. This property does not
come from the bilayer effect but from the additional singu-
larity, namely, the jump, of the density of state at 	=2.08,
due to the local extremes of the in-plane band dispersion at
�� ,0� and �0,��. This quantum phase transition is realized
as long as the dFSD instability occurs near the chemical
potential corresponding to the jump of the density of states;
in the present case, we obtain a quantum phase transition for
1.1�g�0.65.38 Except for this, the phase diagram has
qualitatively same properties as Fig. 3�a�.

For smaller g, the temperature scale of the dFSD becomes
small and the other energy scale set by �z should be taken
into account. Figure 6�c� is the result for g=0.5. The dFSD
instability occurs around the van Hove energy of the bonding
and antibonding bands, i.e., 	vH= �2−���t� tz�+2t��
=1.742 and 1.965, respectively. In this case, as already
shown in Fig. 3�d�, the phase diagram is occupied by the F
stacking. The dFSD instability around 	vH=1.742 is strongly
suppressed compared to that around 	vH=1.965. This asym-
metry comes from strong breaking of particle-hole symmetry
due to the presence of sizable t� and t�.

D. Connection to Sr3Ru2O7

The bilayer ruthenate Sr3Ru2O7 is a material expected to
exhibit the dFSD instability,13,14 which is also suggested by
theoretical studies.15–19 Its experimental phase diagram was
obtained as a function of a magnetic field. We thus include a
magnetic field

− h �
k,�,i

�ck�
i† ck�

i �8�

in Hamiltonian �1�. Following the previous theoretical work
in the single-layer model17,18 and local-density approxima-

FIG. 5. �a� 	-T phase diagrams for the bilayer dispersion �k
z

=−4tz cos
kx

2 cos
ky

2 for g=1. The notation is the same as in Fig. 3. �b�
g dependence of 	c, the critical chemical potential of the dFSD
instability, at T=0.005. The transition is of first order, except for
�g ,	���0.25,1.401� and �0.24, 1.406�, where the second-order
transition occurs. 	1st denotes a first-order transition inside the
symmetry-broken phase.
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FIG. 6. �a� 	-T phase diagrams for the bilayer
dispersion �k

z =−2tz�cos kx+cos ky� for �a� g=1.2,
�b� 1.0, and �c� 0.5. The notation is the same as in
Fig. 3; dotted lines �T1st� are present only in �a�
and �b�. The inset in �a� magnifies the region near
the first-order transition at higher 	; in �b� the
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around 	=1.55 and T=0.156; the inset in �c�
magnifies the phase at lower 	.
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tion calculations39 for Sr3Ru2O7, we choose the band param-
eters t�=0.35, t�=0,40 and �k

z =−tz with tz=0.1; �z becomes
finite. Since the temperature scale of the dFSD instability in
Sr3Ru2O7 is about 1 K and is expected much smaller than
�z�=0.1�, we imitate such a situation choosing a small cou-
pling constant g=0.5. We set the chemical potential to 	
=1.288 so that the dFSD instability occurs when a magnetic
field is applied, modeling the experimental situation.13,14

Since the phase diagram is symmetric with respect to h→
−h and �→−�, we focus on the region h�0.

Figure 7 is the obtained phase diagram, whose property is
the same as that obtained in the single-layer model.17,18 The
instability occurs around the van Hove energy of the bonding
band of up spins, i.e., h=0.012. As shown in Fig. 3�d�, the
phase diagram in this case is occupied by the F region. By
analogy with Fig. 3�d�, another F dFSD phase is expected
around the van Hove energy of the antibonding band of up
spins, which is located at h=0.212. However, as clarified in
Ref. 18, a magnetic field strongly suppresses the onset tem-
perature of the dFSD. In the present parameters, the maximal
Tc of the second dFSD phase becomes less than 0.0002, one
order magnitude smaller than Fig. 7. Moreover, the field
range of the second dFSD phase is less than about 0.0002
around h=0.212. In experiments, therefore, the detection of
the predicted second dFSD phase requires not only a mea-
surement at a very low temperature much less than 1 K but
also very precise tuning of a magnetic field.

IV. CONCLUSIONS

We have performed a comprehensive study of the dFSD
instability in the bilayer model considering various bilayer
dispersions and tuning coupling strength and long-range hop-
ping integrals. The important quantity is �z, i.e., the energy
of the bilayer splitting at the saddle points of the in-plane
band dispersion. As along as �z�0, a major stacking pattern
is usually AF, and F stacking is stabilized as a dominant
pattern only when the temperature scale of the dFSD be-
comes much smaller than �z. For �z=0, the phase diagram
depends strongly on the choice of the bilayer dispersion,
leading to a variety of phase diagrams. This conclusion holds
even when the saddle points of the in-plane band dispersion
shift from �� ,0� and �0,��. In connection with Sr3Ru2O7,
the effect of a magnetic field on the bilayer model is studied.
Since in Sr3Ru2O7, we expect �z�0 and the temperature
scale of the dFSD is likely much smaller than �z, we predict

the F dFSD instability around the van Hove energy of, in
principle, both bonding and antibonding bands. However, the
dFSD phase around the antibonding band turns out to be
strongly suppressed by a magnetic field.

In Sr3Ru2O7, there are three different orbitals, dxy, dyz, and
dxz in Ru sites, all of which form the bands crossing the
Fermi energy. Previous theoretical studies15–19 as well as the
present work are based on the assumption that dxy orbitals
form an active band of the dFSD instability. Recently Raghu
et al.,41 and Lee and Wu42 proposed a different scenario that
dyz and dxz orbitals are responsible for the dFSD instability.
Considering a rich variety of phase diagrams obtained in the
present bilayer model, it may be worth investigating a role of
weak bilayer coupling in their scenario.

Implications of the present results for cuprate supercon-
ductors may be obtained from the analysis of the t-J model.
The t-J model contains the effective interaction described by
Eqs. �1� and �2� with a coupling constant g=3J /8.2 While g
seems small, the highest critical temperature of the dFSD
instability reaches around �0.2J close to half filling in the
so-called uniform resonating-valence-bond state assumed
down to zero temperature �see Secs. IIIA and IIIC in Ref. 2�.
This is because the nearest-neighbor hopping integral is
strongly renormalized to become smaller than J at low dop-
ing. Hence the t-J model may correspond to the case of a
relatively large g��1� in the present work, implying a large
effective interaction of the dFSD for cuprates.

Application of the present results to cuprate supercon-
ductors, however, is not straightforward because the dFSD is
order competing with superconductivity as found in the t-J
�Refs. 1, 2, and 7� and Hubbard3,43–46 models. In fact, the
dFSD instability can be prevailed over by superconductivity.
Nevertheless sizable correlations of the dFSD may survive.47

The dFSD is still an important tendency, leading to a giant
response to a small external anisotropy. This idea was in-
voked to understand the shape of the Fermi surface and mag-
netic excitations in La-based cuprates1,48 as well as the
strong anisotropy of magnetic excitations observed in
YBa2Cu3Oy.

20,26 Furthermore, sizable dFSD fluctuations
substantially reduce the lifetime of quasiparticles in the an-
tinodal region of the Fermi surface while not in the nodal
direction.49 In this sense, the dFSD fluctuations contribute to
pseudogap behavior, which may be relevant to the strongly
underdoped YBa2Cu3Oy.

26

The competition of the dFSD and superconductivity was
studied in a general setting tuning coupling strength of su-
perconductivity and turned out to lead to a variety of quali-
tatively distinct phase diagrams.50 Such a study may be ex-
tended to the bilayer case. Three energy scales of �z,
coupling strength of superconductivity, and that of the dFSD
may play an important role to elucidate the phase diagram. It
is also interesting to see whether the competition with super-
conductivity favors F or AF stacking of the dFSD.

Allowing a small momentum transfer in the forward-
scattering interaction �Eq. �1��, one can incorporate fluctua-
tions of the dFSD.49 Fluctuations of the dFSD were studied
in the context of quantum criticality,49,51 the competition
with superconductivity,47 and quantum phase transition
deeply inside the d-wave superconducting state.24,25 The
present work provides a sound basis to extend such studies to
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FIG. 7. h-T phase diagram designed for Sr3Ru2O7; �k
z =−tz, g

=0.5, and 	=1.288.
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a bilayer case, which is more realistic for various materials.
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